Probability and conditional probability

Probability

$$P(A) = \frac{\text{# cells in event } A}{\text{# cells overall}}$$

Conditional probability

$$P(A|B) := \frac{P(A \cap B)}{P(B)}$$

Algebraic approach

- 1. Write Bayes.
- 2. Use LOTP to obtain expression for denominator in Bayes.

Bayes

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

LOTP

$$P(A) = \sum_{i} P(A|B_i)P(B_i)$$

Tree approach

Tabular approach

- 1. Fill in entries using given information.
- Infer additional entries by ensuring that indicated sums equal indicated values.

	\boldsymbol{A}		A^{C}		
В	$P(A \cap B)$	+	$P(A^{C} \cap B)$		P(B)
	+		+		+
B C	$P(A \cap B^{C})$	+	$P(A^{C} \cap B^{C})$	_	$P(B^{C})$
	II		II		II
	P(A)	+	$P(A^{C})$	=	1

Venn diagram

When given counts or probabilities for a population in which some subpopulations partially overlap, fill in the given counts or probabilities in a diagram like the one at the right.

Page 1 of 1 DAVIDLIAO.COM